

THE BEHAVIOUR OF SOME LONG-CHAIN 3-SUBSTITUTED FURANS AND THIOPHENES UNDER ELECTRON IMPACT

Rashad SHABANA* and Sanaa M. S. ATTA

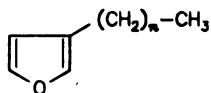
National Research Centre, Dokki-Cairo, Egypt

Received June 3, 1992

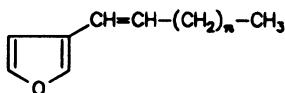
Accepted October 19, 1992

The behaviour of 24 long-chain 3-substituted furans (*I*, *II*) and thiophenes (*III*, *IV*) under electron impact, was studied. Different fragmentation pathways were outlined.

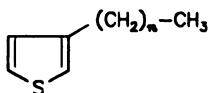
Recently¹, we have synthesized a series of new long-chain 3-alkyl- and 3-(alk-1-en-1-yl)-furans *I*, *II* and thiophenes *III*, *IV* by the Wittig reaction between alkyltriphenylphosphonium bromides and the appropriate furan- and thiophene-3-carboxaldehydes. Compound *I*–*IV* could be used as intermediates for a variety of synthetic applications and industrial utilities especially in the field of electropolymerization, formation of Langmuir–Blodgett films^{2–4} as well as for fabrication of molecular electron devices and chemically modified electrodes⁵.

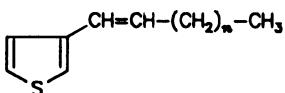

In response to our growing interest concerning heterocyclic compounds⁶, we studied the mass spectra of compounds *I*–*IV*. We believe that such unique series of compounds *I*–*IV* possesses constitutional features sufficient to justify their study under electron impact, since the induced decompositions might depend not only on the length of the carbon-chain linked to the 3-position of the ring but also on the heterocyclic ring itself.

EXPERIMENTAL


For preparation of compounds *I*–*IV*, cf. ref.¹. The mass spectra were obtained on a Parkin–Elmer RMU-7 mass spectrometer or a Kratos MS 80 instrument with a DS-55 data systems. Measurements were done at 70 eV. All molecular ion peaks were identified by high resolution mass spectral investigations.

RESULTS AND DISCUSSION


The mass spectra of furans *Ia*–*Ic* show close resemblance to each other. The relatively low intensities of their molecular ion peaks (~ 10%) (Table I) show that they possess relative instability toward electron impact^{7,8}. The first conspicuous peak in their spectra appears at *m/z* 124 (Scheme 1). This indicates that the largest alkyl fragment attached to the furan ring in *Ia*–*Ic* incorporates 4 carbon atoms.


<i>I</i>	<i>n</i>
<i>a</i>	15
<i>b</i>	16
<i>c</i>	18

<i>II</i>	<i>n</i>
<i>a</i>	13
<i>b</i>	14
<i>c</i>	16

<i>III</i>	<i>n</i>
<i>a</i>	12
<i>b</i>	13
<i>c</i>	14
<i>d</i>	15
<i>e</i>	16
<i>f</i>	18

<i>IV</i>	<i>n</i>
<i>a</i>	10
<i>b</i>	11
<i>c</i>	12
<i>d</i>	13
<i>e</i>	14
<i>f</i>	16

The molecular ion peak (M^+) of compound *Ib*, taken as a representative example, appears at m/z 306 (*A*, 10%) (Scheme 1, Fig. 1). Cleavage of M^+ at site *w* produces cation *a* at m/z 67 (13%) while cleavage at site *x* yields the ion at m/z 81 (64%). The

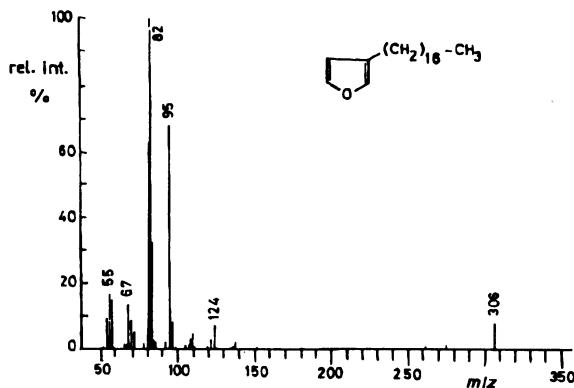
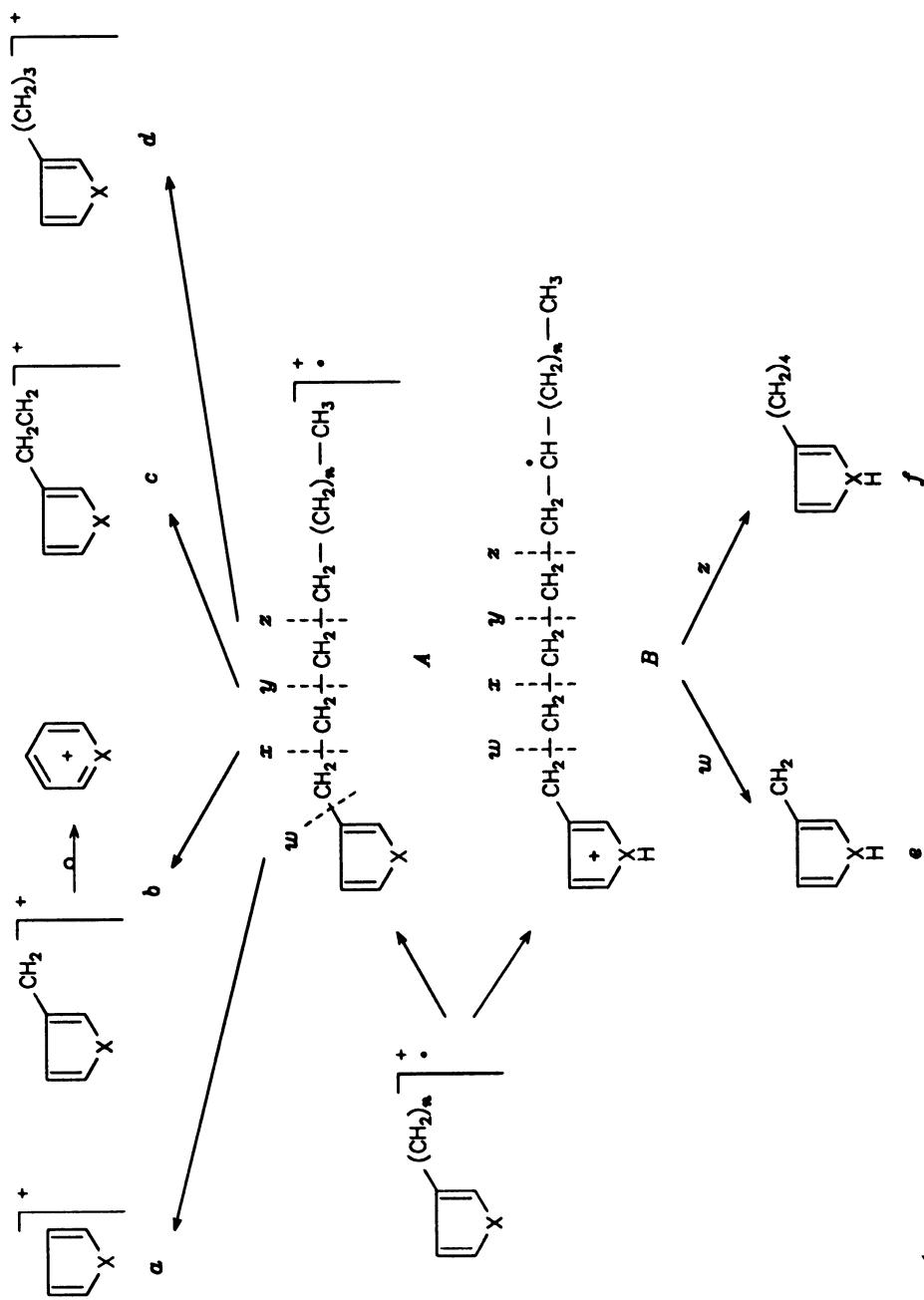
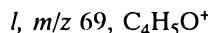
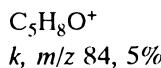
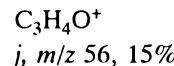
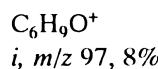
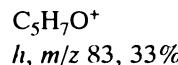
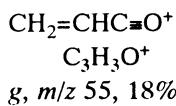



Fig. 1
Mass spectrum of compound *Ib*

latter ion is best represented by the pyrylium cation *b* (ref. ⁷). In the same sense, cleavage of M^+ at sites *y* and *z* would also produce cations *c* and *d* at *m/z* 95 (68%) and 109 (< 5%), respectively. However, formation of the main fragments in the mass spectrum of *Ib* can be interpreted in terms a priori rearrangement of ion *A* to structure *B*. Subsequent cleavage of structure *B* at site *w* produces ion *e* at *m/z* 82 (100%, base peak). Similarly cleavage of *B* along site *z* produces cation *f* with *m/z* 124 (8%).

The loss of 26 mass units ($\text{CH}=\text{CH}$) frequently observed in the mass spectra of monosubstituted furans (and pyrans)⁷ was also noticeable in the spectrum of *Ib*, and accounts for formation of cations *g* (*m/z* 55, 18%), *h* (*m/z* 83, 33%), *i* (*m/z* 97, 8%), *j* (*m/z* 56, 15%) and *k* (*m/z* 84, 5%), respectively.

TABLE I
Mass spectra of 3-alkylfurans *Ia*–*Ic* and 3-alkylthiophenes *IIIa*–*IIIf*

Compound	<i>m/z</i> (relative intensity, %)						
	M^+	<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e</i>	<i>f</i>
<i>Ia</i>	292 (10)	67 (23)	81 (70)	95 (70)	109 <td>82 (100)</td> <td>124 (8)</td>	82 (100)	124 (8)
<i>Ib</i>	306 (10)	67 (13)	81 (64)	95 (68)	109 <td>82 (100)</td> <td>124 (8)</td>	82 (100)	124 (8)
<i>Ic</i>	334 (10)	67 (6)	81 (25)	95 (32)	109 <td>82 (100)</td> <td>124 (8)</td>	82 (100)	124 (8)
<i>IIIa</i>	266 (100)	83 <td>97 (23)</td> <td>111 (11)</td> <td>125<br (<="" 5)<="" td=""/><td>98 (75)</td><td>140<br (<="" 5)<="" td=""/></td></td>	97 (23)	111 (11)	125 <td>98 (75)</td> <td>140<br (<="" 5)<="" td=""/></td>	98 (75)	140
<i>IIIb</i>	280 (28)	83 <td>97 (59)</td> <td>111 (23)</td> <td>125<br (<="" 5)<="" td=""/><td>98 (100)</td><td>140 (6)</td></td>	97 (59)	111 (23)	125 <td>98 (100)</td> <td>140 (6)</td>	98 (100)	140 (6)
<i>IIIc</i>	294 (4)	83 (5)	97 (32)	111 (12)	125 <td>98 (100)</td> <td>140<br (<="" 5)<="" td=""/></td>	98 (100)	140
<i>IIId</i>	308 (25)	83 <td>97 (48)</td> <td>111 (22)</td> <td>125 (5)</td> <td>98 (100)</td> <td>140 (5)</td>	97 (48)	111 (22)	125 (5)	98 (100)	140 (5)
<i>IIIe</i>	322 (80)	83 (5)	97 (78)	111 (48)	125 (5)	98 (100)	140 (18)
<i>IIIf</i>	350 (45)	83 <td>97 (38)</td> <td>111 (15)</td> <td>125<br (<="" 5)<="" td=""/><td>98 (100)</td><td>140 (5)</td></td>	97 (38)	111 (15)	125 <td>98 (100)</td> <td>140 (5)</td>	98 (100)	140 (5)

Presence of an ion at m/z 69 in the mass spectrum of *Ib* is attributable to cation *l* which is also observed in the spectra of a number of monosubstituted alkylfurans⁷.

The mass spectra of compounds *IIIa* – *IIIf* (Table I) also possess some unique features. Except for *IIIa*, they show the base peak at m/z 98 which stands for cation *e* (X = S, Scheme 1). The intensity of the molecular ion peaks in the spectra of *IIIa* – *IIIf* is much higher in comparison with those of furan analogues *I*. This shows that thiophenyl compounds *III* are relatively stable under electron bombardment. Presence of the peak at m/z 140 with a considerable intensity (5 – 18%) in the spectra of *IIIa* – *IIIf* indicates that the longest chain attached to the thiophene nucleus has four carbon atoms. The low intensity of ion *d* (< 5%) in the spectra of *Ia* – *Ic* and *IIIa* – *IIIf* indicates that cleavage of their molecular ions (structure *A*) at site *z* is less frequent (Fig. 2).

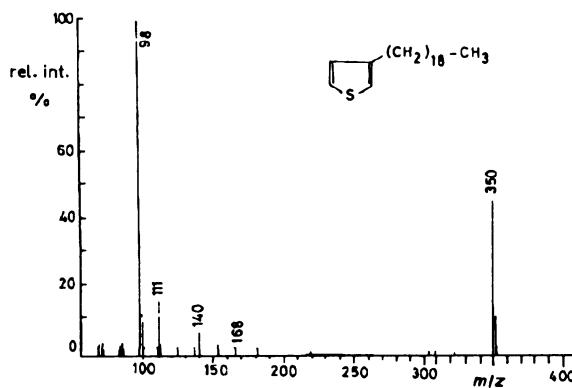
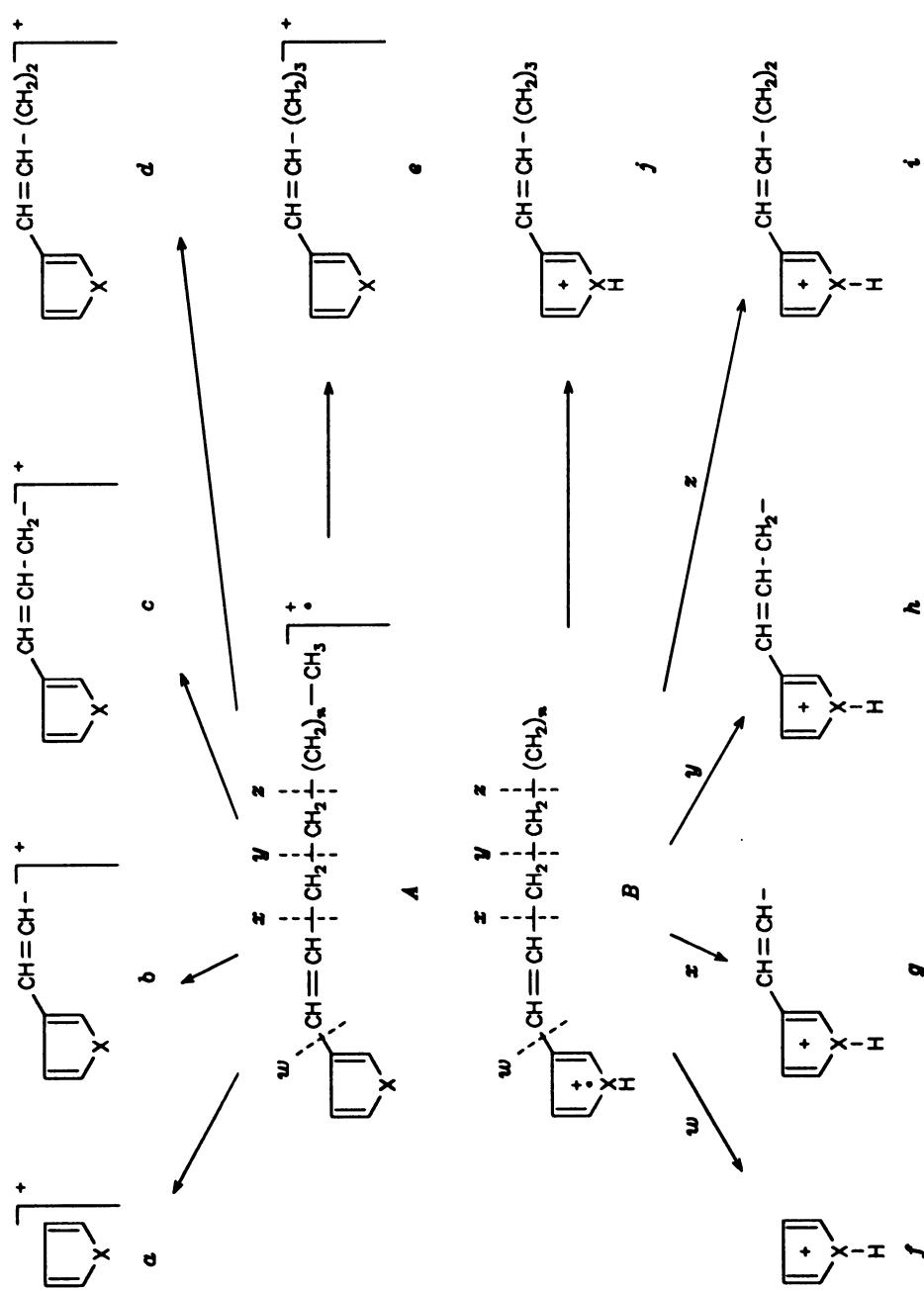
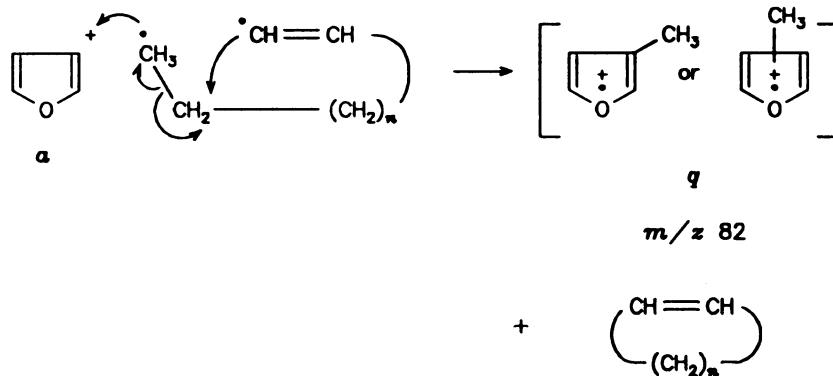



Fig. 2
Mass spectrum of compound *IIIf*

The behaviour of 3-(alk-1-en-1-yl)furan *IIa* – *IIc* under electron impact resembles that of thiophene analogues *IVa* – *IVf*. Fragmentation of M^+ in both groups of compounds (*II*, *IV*) can be interpreted in terms of its existence in the radical cation structure *A* and *B* (Scheme 2). In the case of the mass spectra of *IIc* (Fig. 3) and *IVf*, taken as representative examples, cleavage at the site *w* in both structures (*A* or *B*) is rather inefficient and produces hardly conspicuous (< 5%) ion peaks *a* and *f*. Cleavage at site *x*, however, is much obvious in structure *B* which produces ion *g*. Allylic cleavage of M^+ (*A* or *B*) at site *y* produces cations *c* and *h* and accounts for the formation of the base peak in the spectra of *IVf* and of all other thiophene derivatives (Fig. 4). Cleavage at site *z* is noticeable only in structure *A* and gives rise to ion *d*. Cleavage further than site


TABLE II
Mass spectra of 3(alk-1-en-1-yl)furan (*IIa* – *IIc*) and 3(alk-1-en-1-yl)thiophene (*IVa* – *IVf*)

Compound	M^+	m/z (relative intensity, %)									
		<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e</i>	<i>f</i>	<i>g</i>	<i>h</i>	<i>i</i>	<i>j</i>
<i>IIa</i>	290 (23)	67 (18)	93 (12)	107 (80)	121 (40)	135 (20)	68 (7)	94 (77)	108 (70)	122 (8)	136 (< 5)
<i>IIb</i>	304 (19)	67 (18)	93 (10)	107 (73)	121 (35)	135 (17)	68 (12)	94 (73)	108 (75)	122 (7)	136 (< 5)
<i>IIc</i>	332 (37)	67 (5)	93 (5)	107 (85)	121 (35)	135 (28)	68 (6)	94 (68)	108 (75)	122 (10)	136 (6)
<i>IVa</i>	264 (48)	83 <td>109<br (<="" 5)<="" td=""/><td>123 (100)</td><td>137 (18)</td><td>151 (15)</td><td>84 (5)</td><td>110 (38)</td><td>124 (24)</td><td>138 (5)</td><td>152 (< 5)</td></td>	109 <td>123 (100)</td> <td>137 (18)</td> <td>151 (15)</td> <td>84 (5)</td> <td>110 (38)</td> <td>124 (24)</td> <td>138 (5)</td> <td>152 (< 5)</td>	123 (100)	137 (18)	151 (15)	84 (5)	110 (38)	124 (24)	138 (5)	152 (< 5)
<i>IVb</i>	278 (45)	83 (5)	109 (5)	123 (100)	137 (18)	151 (14)	84 (5)	110 (48)	124 (22)	138 (< 5)	152 (< 5)
<i>IVc</i>	292 (35)	83 (5)	109 <td>123 (100)</td> <td>137 (17)</td> <td>151 (13)</td> <td>84 (6)</td> <td>110 (48)</td> <td>124 (22)</td> <td>138 (< 5)</td> <td>152 (< 5)</td>	123 (100)	137 (17)	151 (13)	84 (6)	110 (48)	124 (22)	138 (< 5)	152 (< 5)
<i>IVd</i>	306 (70)	83 <td>109 (68)</td> <td>123 (100)</td> <td>137 (38)</td> <td>151 (30)</td> <td>84<br (<="" 5)<="" td=""/><td>110 (70)</td><td>124 (55)</td><td>138 (35)</td><td>152 (< 5)</td></td>	109 (68)	123 (100)	137 (38)	151 (30)	84 <td>110 (70)</td> <td>124 (55)</td> <td>138 (35)</td> <td>152 (< 5)</td>	110 (70)	124 (55)	138 (35)	152 (< 5)
<i>IVe</i>	320 (53)	83 (5)	109 (60)	123 (100)	137 (18)	151 (12)	84 (7)	110 (60)	124 (32)	138 (< 5)	152 (< 5)
<i>IVf</i>	348 (95)	83 (5)	109 (5)	123 (100)	137 (19)	151 (18)	84 (7)	110 (40)	124 (25)	138 (6)	152 (7)

z, more remote from heterocyclic ring, is observed only in structure *A* whereby ion *e* is produced (Scheme 2, Table II).

The base peak in the mass spectra of the furan derivatives *Ia*–*Ic*, appears at *m/z* 82 (Fig. 3). This might be explained in terms of initial formation of cation *a* via ejection of the alkenyl radical. The latter can eject a methyl radical to give the neutral cycloalkenyl species *p*. Combination of the CH_3 radical with cation *a* produces then the radical cation at *m/z* 82 (*q*, 100%, Scheme 3).

SCHEME 3

It is evident that the long-chain 3-alkylfurans *Ia*–*Ic* give rise to the molecular ion peaks in ca 10% intensity under electron impact. The analogous thiophenes *IIIa*–*IIIc* give molecular ions which vary in intensities between 4% and 100%, differing thus from the behaviour of the short-chain analogues (e.g. 2-ethylthiophene)⁹. Also, it has to

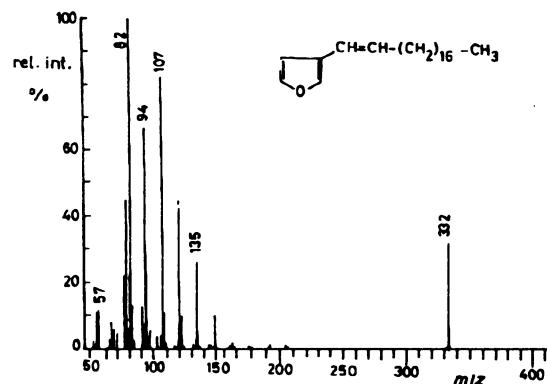


Fig. 3
Mass spectrum of compound *Ic*

be stated that the first conspicuous peak in the mass spectra of both furans *I* and thiophenes *III* bears 4 carbon atoms in the side chain regardless of the length of this chain. On the other hand, 3-(alk-1-en-1-yl)furans and/or thiophenes show almost the same fragmentation pattern but differ in the identity of the base peak which appears at *m/z* 82 in the spectra of the furans *I* while it is shown at *m/z* 123 in the thiophene analogues *III*.

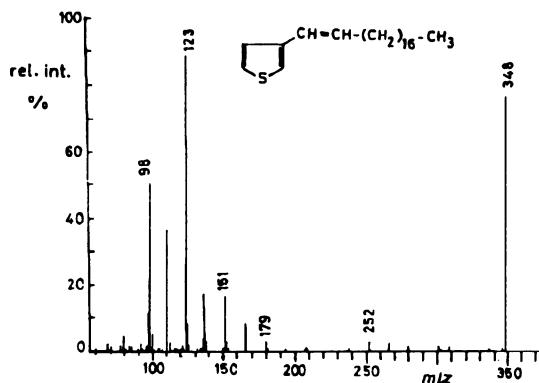


Fig. 4
Mass spectrum of compound *IVf*

This work was done at Dr H. Zimmer's laboratories at the Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, U.S.A. It was partially supported by a NASA research grant No. NA63-995.

REFERENCES

1. Shabana R., Amer A., Mark H. B., jr., Zimmer H.: *Phosphorus Sulfur Silicon* **53**, 299 (1990).
2. Richard J., Vandevyver M., Morand J. P., Lapouyade R., Delhaes P., Jacquinot J. F., Roullay M.: *J. Chem. Soc., Chem. Commun.* **1988**, 754.
3. Luk S. Y., Williams J. O.: *J. Chem. Soc., Chem. Commun.* **1989**, 158.
4. Delabougline D., Roncali J., Lemaire M., Garnier F.: *J. Chem. Soc., Chem. Commun.* **1989**, 475.
5. Bryce M. R., Chissel A., Kathirgamanathan P., Parker D., Smith N. R. M.: *J. Chem. Soc., Chem. Commun.* **1987**, 466.
6. Wamhoff H., Ertas M., Atta S. M. S.: *Liebigs Ann. Chem.* **1985**, 1910; Atta S. M. S., Hishmat O. H., Wamhoff H.: *J. Prakt. Chem.*, in press; Atta S. M. S.: *Monatsh. Chem.*, in press; Hishmat O. H., Atta S. M. S.: *Egypt. J. Chem.* **30**, 507 (1987); Hafez T. S., El-Khoshniah Y. O., Mahran M. R., Atta S. M. S.: *Phosphorus Sulfur Silicon* **56**, 165 (1991).
7. Budzikiewicz H., Djerassi C., Williams D. H.: *Interpretation of Mass Spectra of Organic Compounds*, p. 231. Holden-Day, San Francisco 1964.
8. Hanuš V., Čermák V.: *Collect. Czech. Chem. Commun.* **24**, 1602 (1959); Kinnew I. W., Cook G. L.: *Anal. Chem.* **24**, 1391 (1952).
9. Bowie J. H., Cooks R. G., Lawesson S.-O., Nolde C.: *J. Chem. Soc., B* **1967**, 616.